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1 Hadamard Factorization

1.1 Lower bound on the product of Weierstrass factors

Let f be entire of finite order ρ, with zeros (ak) such that 0 < |a1| ≤ a2| ≤ · · · . Let m ∈ N
be such that m ≤ ρ < m+ 1. Then we have the Hadamard factorization:

f(z) = eg(z)zp
∞∏
k=1

Em(z/ak),

where g is entire, and p is the order of the zero at z = 0.

Theorem 1.1 (Hadamard). The function g is a polynomial of degree ≤ p.

We need a good lower bound on the canonical product away from the zeros {ak}.

Proposition 1.1. For any s ∈ R such that ρ < s < m+ 1, there is a constant Cs = C > 0
such that ∣∣∣∣∣

∞∏
k=1

Em(z/ak)

∣∣∣∣∣ ≥ e−C|z|s
for all z ∈ C \

⋃
D(ak, |ak|−m−1).

Proof. We need the following 2 estimates for Em(z):

1. |Em(z)| ≥ e−C|z|m+1
when |z| < 1/2: Write

Em(z) = (1− z)e
∑m
j=1 z

/j = ew,

where

w = log(1− z) +

m∑
j=1

zj

j
= −

∞∑
j=m+1

zj

j
.

So |w| ≤ 2|z|m+1, and the estimate follows.
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2. Em(z)| ≥ |1− z|e−C|z|m when |z| > 1/2: Write

|Em(z)| ≥ |1− z|e−|
∑m
j=1 z

j/j|,

where ∣∣∣∣∣∣
m∑
j=1

zj

j

∣∣∣∣∣∣ ≤ |z|m
m∑
j=1

1

|z|m−j
≤ C|z|m.

We write next
∞∏
j=1

Em(z/ak) =
∏

|z/ak|<1/2

Em(z/ak)︸ ︷︷ ︸
=A

∏
|z/ak|≥1/2

Em(z/ak)︸ ︷︷ ︸
=B

.

The first estimate gives

|A| ≥
∏

|z/ak|<1/2

e−C|z/ak|
m+1

= e
−C|z|m+1

∑
|ak|>2|z| 1/|ak|m+1

.

Now if ρ < s < m + 1, then
∑

1/|ak|s < ∞ (by the same argument as in last lecture).
Then |ak|−m−1 = |ak|−s|ak|s−m−1 ≤ C|ak|−s|z|s−m−1, so we get the lower bound

|A| ≥ e−Cs|z|s .

Next, the second estimate gives

|B| ≥
∏

|z/ak|>1/2

|1− z/ak|
∏

|z/ak|≥1/2

e−C|z/ak|
m

︸ ︷︷ ︸
=exp(−C|z|m

∑
1/|ak|m)

.

To bound this second term, we have |ak|−m = |ak|−s|as−mk ≤ C|z|s−m|ak|−s, so∏
|z/ak|≥1/2

e−C|z/ak|
m ≥ e−Cs|z|s .

Finally, using |z − ak| ≥ 1/|ak|m+1 for all k, we get∏
|z/ak|≥1/2

|1− a/zk| ≥
∏

|z/ak|≥1/2

1

|ak|m+2
.

Taking logs, we get∑
|ak|≤2|z|

(m+ 2) log |ak| ≤ O(1) log(2|z|) n(2|z|)︸ ︷︷ ︸
≤Cε|z|ρ+ε

≤ O(1)|z|s.

The result follows.
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1.2 Proof of Hadamard’s theorem

Let Ω = C \
⋃
D(ak, 1/|ak|m+1) be the domain from the previous proposition.

Proposition 1.2. There exists a sequence Rk →∞ such that {|z| = Rk} ⊆ Ω.

Proof. Recall that
∑∞

k=1 1/|ak|m+1 < ∞. Pick N so that
∑∞

k=N 1/|ak|m+1 < 1/2. Set
Ak = {x ∈ R : |x − |ak|| ≤ |ak|−m−1}. Then

∑∞
k=N < 1. Given L ∈ N large, let

r ∈ [L1, L+ 1] \
⋃∞
k=N Ak; the set

⋃∞
k=N Ak has Lebesgue measure < 1. Then if |z| = r,

|z − ak| ≥ ||z| − |ak|| ≥
1

|ak|m+1
.

If L ≥ L0 for large L0, we also get

|z − ak| ≥
1

|ak|m+1

for 1 ≤ k ≤ N , and the result follows.

Now we can prove Hadamard’s theorem. Recall that we have

f(z) = eg(z)zp
∞∏
k=1

Em(z/ak).

Proof. When |z| = Rj , we have

|eg(z)| = |f(z)|
|zp|

∏
Em(z/ak)︸ ︷︷ ︸

≥Cε exp(−|z|ρ+ε)

≤ Cεe|z|
ρ+ε

for al ε > 0. By the Borel-Carathéodory estimate, which says

sup
|z|=r
|g(z)| ≤ 2r

R− r
sup
|z|=R

Re(g(z)) +
R+ r

R− r
|g(0)|, r < R,

there exists a sequence Rj →∞ such that

|g(z)| ≤ Cε + |z|ρ+ε, |z| = Rj , j = 1, 2, . . .

By the usual Cauchy’s estimates argument, g is a polynomial of degree ≤ ρ.
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